Search results for " 35K67"
showing 2 items of 2 documents
Energy dissipative solutions to the Kobayashi-Warren-Carter system
2017
In this paper we study a variational system of two parabolic PDEs, called the Kobayashi-Warren-Carter system, which models the grain boundary motion in a polycrystal. The focus of the study is the existence of solutions to this system which dissipate the associated energy functional. We obtain existence of this type of solutions via a suitable approximation of the energy functional with Laplacians and an extra regularization of the weighted total variation term of the energy. As a byproduct of this result, we also prove some $\Gamma$-convergence results concerning weighted total variations and the corresponding time-dependent cases. Finally, the regularity obtained for the solutions togethe…
Boundary regularity for degenerate and singular parabolic equations
2013
We characterise regular boundary points of the parabolic $p$-Laplacian in terms of a family of barriers, both when $p>2$ and $1<p<2$. Due to the fact that $p\not=2$, it turns out that one can multiply the $p$-Laplace operator by a positive constant, without affecting the regularity of a boundary point. By constructing suitable families of barriers, we give some simple geometric conditions that ensure the regularity of boundary points.